
1

Equivalence-based Selection of Best-fit Models to
Support Wiki Design

Giuseppe De Ruvo, Antonella Santone
Department of Engineering, University of Sannio, Benevento, Italy

e-mail: {gderuvo@unisannio.it, santone@unisannio.it}

Abstract—A wiki is a collaborative Web site whose content
can be edited by anyone who has the access. Wikis are becoming
a new work tool in enterprises and are widely spreading every-
where. Indeed, it is important to consider the design and evolution
of a wiki. We present a methodology to help wiki designers,
engineers and domain experts. In practice, from the wikis we
derive formal models, which are successively used to perform
equivalence checking. More precisely, in order to design a wiki
p we propose a methodology for the selection of the best-fit wiki
model q, among a set of candidate ones. For best fit we mean
that p and q have a similar structure. To handle the complexity
of finding all possible candidates processes q, a heuristic function
can be used to filter the set of significant candidates, and to speed
up the search of a successful one, which is the main contribution
of the paper. Eventually, the elected model may be exploited to
start the design process.

Index Terms—Wiki, Equivalence Checking, Process Algebra,
Design.

I. INTRODUCTION

The first wiki (WikiWikiWeb) was created in 1995 by
Ward Cunningham. In the following years the wiki idea was
widely adopted and today there are hundreds of wiki engines
available1 which provide a plethora of features.

In 2006 Ward Cunningham himself presented a set of Wiki
Principles [1] that have been driving wikis. Basically, the
father of wikis stressed the openess of a wiki, where pages -
even if incomplete or rather poorly organized - can be edited
by anyone who sees fit (Open Principle). While the community
grows up the content of the wiki evolves as well (co-evolution).
The activities within the site can be watched and reviewed by
any other visitor. Ambiguity and duplication can be removed
by finding and citing similar or related content. Thus, wikizens
- the users of a wiki - can come and go without changing a
wiki’s identity. During the last decade the identity of wikis has
changed, because it has been exploited in different context and
environments. In fact, wikis are becoming a new work tool
used as in-house document systems and applications and as
a powerful aid for providing knowledge sharing capabilities.
A recent research by Standing and Kiniti [2] pointed out
that organizational or corporate wikis are sustainable and
can be beneficial to organizations particularly in improving
work processes, collaboration and knowledge management.
Indeed, wikis have been seen as new way to do innovation
in organizations for developing new products and processes.
Furthermore there are many Free Libre Open Source Software

1http://www.wikimatrix.org

projects (FLOSS) which a are using wikis as main form of
documentation. Software versioning repositories (e.g., github2,
bitbucket3) provide an integrated wiki.

WikiWikiWeb4 was developed in order to make the ex-
change of ideas between programmers easier acting as a library
to create design patterns. Thus, the first idea of wiki has its
foundation in software engineering, but the principles of a
wiki do not rely on software engineering maybe due to their
open-editing nature. Notwithstanding, the evolution of wikis
must be driven by solid principles to bring real benefits in
various disciplines. As well as a large software system cannot
be designed simply adding components in disparate ways by
anyone who is able to write code, a large wiki may need
proper design phase even though “wikizens” can behave as
either readers or designers. This does not mean refusing all
the starting guidelines: methodologies and tools have to adapt
a wiki according to its purpose and target domain, providing
the integration with the wiki nature itself.

We argue that we can easily add a proper methodology
to the wiki design process without affecting the basics that
lead the wiki-model to success. We propose a wiki-design
methodology based on formal methods.

In this paper we use Milner’s Calculus of Communicating
Systems (CCS) [3] as specification formal language. For
simplicity we use CCS, but we can equivalently use any
other process algebra based specification language, such as
CSP and LOTOS. Based on CCS, different methods and tools
have been developed for the verification of systems. Examples
of such methods are model checking [4] and equivalence
checking [3]. The aim of model checking is to explore the
behaviour of a system exhaustively, in an attempt to find
errors, while the aim of equivalence checking is to determine
whether two systems are equivalent to each other according
to some mathematically-defined notion of equivalence. Model
checking has been applied to several fields. For instance, it has
been used in bioinfomatics to infer gene regulatory networks
from time series data [5] or to assess the correctness of
JVM implementation [6]. In this paper, we apply equivalence
checking to compare a desired wiki artefact with existing ones.
The user can express a set of features (i.e., number of links,
pages, categories and so on) and it is prompted with a set
of similar structures. The latter can be chosen as a starting

2http://github.com
3http://bitbucket.org
4http://c2.com/cgi-bin/wiki?WikiWikiWeb

2

point. From wikis we derive process specifications and from
desired artefact’s features we build a possible specification.
After that, we compare existing wiki processes speeding up
the exploration using a heuristic function. The remainder of
this paper is organized as follows. First, in Section II we give
basic definitions of wikis and CCS. Section III deals with
our methodology for design and verification of wikis. Finally,
in Section IV we conclude providing new inputs for further
research and we present comparisons with related work.

II. PRELIMINARIES

In this section, after introducing the basic definitions of
wikis, we present the Calculus of Communicating Systems
(CCS) [3], the process algebra we have adopted for analysing
and verifying wikis.

A. Wikis

A wiki (from the Hawaiian wiki, to hurry, swift, quick) is a
collaborative Web site whose content can be edited by anyone
who has access to it. Ward Cunningham’s “WikiWikiWeb”5

lets software developers create a library of software patterns.
A wiki is generally divided in categories. Each category

may be split into subcategories. Categories contain pages and
each page belong to different categories. Pages are divided into
sections and each section may be divided into subsections.
Each page has links to other pages or categories and have
external links (i.e., links to web pages). Since wikis are easy
to edit, they changed how we construct knowledge repositories
on the Web. Wikis allow groups to form around specific topics
and they are a great way for a group of people to coordinate
and create content, even though that group counts thousands
of people in different places [7]. Here are some typical things
we can do on a wiki: create an article on a specific topic;
make changes to other people’s articles, without requiring their
permission; create links between articles; group similar articles
together into convenient categories; view the history of an
article to see all the changes, who made them, and when;
see interesting statistics about the articles i.e., which ones are
most popular and/or need updating. There are disparate types
of wikis such as Wiki Mapia that combines Google Maps
with a wiki system supporting over 35 languages; WikiTravel,
a travel guide; LyricWiki, a listing of lyrics by album; Flu
Wiki, intending to help local public health communities coping
with a possible (avian) influenza pandemic, and Ganfyd, an
online collaborative medical reference that is edited by medical
professionals and invited non-medical experts; Diplopedia,
billed as the Encyclopedia of the USA Department of State;
IkeWiki [8], a semantic Wiki developed at Salzburg research
for collaborative knowledge engineering. While it has been
developed primarily as a tool for ontology engineering, it can
be used in a variety of application scenarios.

A recent study pointed out the benefits of using wikis in
enterprises for knowledge sharing [9]. Moreover, many FLOSS
projects use wikis for technical and user documentation, i.e.,
Eclipse and its Eclipsepedia.

5http://c2.com/cgi-bin/wiki?WikiWikiWeb

B. Process algebra: CCS

Historically, process algebras have developed as formal
descriptions of complex computer systems, and in particular
of those involving communicating, concurrently executing
components. There are many examples of process algebras.
In this paper we use Milner’s Calculus of Communicating
Systems (CCS) [3]. Readers unfamiliar with CCS are referred
to [3] for further details. The syntax of processes is the
following:

p ::= nil | x | α.p | p+ p | p|p | p\L | p[f]

where α ranges over a finite set of actions A =
{τ, a, a, b, b, ...}. The action τ ∈ A is called the internal
action. The set of visible actions, V , ranged over by l, l′ . . .,
is defined as A− {τ}. Each action l ∈ V (resp. l ∈ V) has a
complementary action l (resp. l). The restriction set L, in the
processes of the form p\L, is a set of actions such that L ⊆ V .
The relabeling function f , in processes of the form p[f], is a
total function, f : A → A, such that the constraint f(τ) = τ
is respected. The constant x ranges over a set of constant
names: each constant x is defined by a constant definition
x

def
= p, where p is called the body of x. Given a set L ⊆ V ,

by L we denote the set {α|α ∈ L}. We denote the set of
processes by P .

We now informally explain the semantics for CCS by induc-
tion over the structure of processes. nil represents a process
that can do nothing. There is no rule for nil since it cannot
evolve. The process α.p can perform the action α and thereby
become the process p (rule Act). The process p+q is a process
that non-deterministically behaves either as p or as q (rule Sum
and symmetric). The operator | expresses parallel composition.
p and q may act independently: if the process p can perform α
and become p′, then p|q can perform α and become p′|q, and
similarly for q (rule Par and symmetric). Furthermore, p and q
may also together engage in a communication whenever they
are able to perform complementary actions. That is, if p can
perform a visible action l and become p′, and q can perform l
and become q′, then p|q can perform τ and become p′|q′ (rule
Com). If L is a set of visible actions, p\L is a process that
behaves as p except that it cannot perform any of the actions
(as well as the corresponding complementary actions) lying
in L externally, although each pair of these complementary
actions can be performed for communication internally (rule
Res). The operator [f] expresses the relabeling of actions. If
p can perform α and become p′, then p[f] can perform f(α)
and become p′[f] (rule Rel). The behavior of the process x
(x def

= p) is that of its definition p (rule Con).
The standard operational semantics [3] is given by a set

of conditional rules describing the transition relation of the
automaton corresponding to the process p. This automaton is
called labelled transition system (LTS) of p.

Equivalence: Given two LTSs, a natural question is whether
they describe the same behaviour. To answer this question we
must first specify what we mean by ”the same”. For example,
are we satisfied if both LTSs can perform the same sequences
of actions (starting from their initial states) or do we want to

3

impose stricter criteria? In other words, we have to specify
when we consider two LTSs to be equivalent.

Various notions of equivalence have been defined in the
literature. Some are finer than others, meaning that the criteria
that two LTSs should meet for them to be called equivalent,
are stronger.

In the following we introduce a well-known notion of
behavioural equivalence which describes how processes (i.e.,
systems) match each other’s behaviour: the strong equivalence
introduced by Milner. Strong equivalence is a kind of invariant
relation between process that is preserved by actions as stated
by the following definition.

Definition 2.1 (strong equivalence): Let p and q be two CCS
processes.

- A strong bisimulation, B, is a binary relation on P × P
such that p B q implies:

(i) p α−→ p′ implies q α−→ q′ with p′ B q′; and
(ii) q α−→ q′ implies p α−→ p′ with p′ B q′

- p and q are strongly equivalent (p ∼ q) iff there exists a
strong bisimulation B containing the pair (p, q).

III. THE METHODOLOGY

In this section we present our methodology for the selection
of the best-fit wiki model, among a set of candidate models,
for a given wiki that must be designed. More precisely, a user
describes a tentative design and the methodology finds and
returns the wiki design with the closest structure characterised
by number of sections and links (internal/external pages). In
practice, from the wikis we derive CCS processes, which are
successively used to perform equivalence checking. The goal
of our methodology is to help wiki designers, engineers and
domain experts during evolution and re-factoring tasks. As
shown in Figure 1, our approach requires a four-step process.
The four steps are:

1) CCS model creation
2) Selection of the best-fit wiki model
3) Equivalence checking
4) Wiki design process and verification

In the following subsections the four steps are discussed in
detail.

A. CCS model creation

We use as internal representation the CCS language. Thus,
CCS specifications are generated from wikis. This is obtained
by defining a wiki-to-CCS transform operator T . The func-
tion T directly applies to wikis and translates them into
CCS process specifications. The aim of T is to avoid the
construction of “expensive” data structures such as Program
Dependence Graphs while retaining their accuracy for formal
verification. The exploitation of process algebra-based formal
methods for analysing and verifying wikis may seem overkill,
but we think that it is a viable solution due to the availability
of formal verification tools. Furthermore, it opens a wide field
of opportunities to researchers for wikis understanding and
documentation purposes. The function T is defined for each
object of wikis. All wiki objects have been translated in CCS.

Fig. 1: The Methodology

First of all, when analysing a category C, we have to
distinguish between different pages belonging to C. A page
can belong to the same category C, to a different category or
can be an external web page. Thus, in our model we divide
pages into:
• internal page belongs to the analysed category C;
• internal page belongs to a different category;
• external web page.
Wiki category, wiki page and wiki section are then translated

in CCS process. For the details the reader can refer to [10].
A small CCS specification is shown in Table I. It models a
category CAT with two pages, i.e., P1 and P2. Page P1 is
composed of one section SP11 (with a link to P2), while P2

is composed of two sections SP21 and SP22 . SP21 has a link
to an external page of the category CAT (action pwk), while
SP22 has a link to an external web page (action pext).

TABLE I: A CCS specification example

CAT
def
= P1 + P2 SP11

def
= P2

P1
def
= inP1.SP11 SP21

def
= pwk.nil

P2
def
= inP2.(SP21 + SP22) SP22

def
= pext.nil

Actually, as shown in Figure 1, the “CCS model creation”
is obtained analysing wiki databases. The database dumps of
Wikipedia are freely available. They can be downloaded from
Wikimedia6 or using Special:Export function to select one
or more categories7. The latter is usually available in most
wikis even the smaller ones. Dump data must be parsed in
order to start the analysis. “Wiki Dump” contains pages in

6http://dumps.wikimedia.org
7http://en.wikipedia.org/wiki/Special:Export

4

wiki markup language, while “MediaWiki Parsing” provides
facilities to fetch them and through the transformation operator
T , CCS processes are generated in order to create the “Formal
Wiki Models Repository”. A MediaWiki parser is capable of
locating categories, pages, sections and links.

Using the wiki-to-CCS transform operator T , we can create
a repository of CCS models corresponding to existing wiki
categories. Afterwards, we have to define the CCS process
corresponding to the wiki category that must be designed.
For this purpose, we have to take into account the number
of internal/external pages. This information can guide the
definition of the structure of the CCS process corresponding
to p (”Wiki Features Specification” in Figure 1).

B. Selection of the best-fit wiki model

Exploiting the previous step, we can operate on a repository
of CCS models corresponding to existing wiki categories. The
next step is to use that repository to find wiki-processes q
that best fit with the wiki process p that must be designed.
For best fit we mean that p and q have a similar structure,
independently of the action name of the pages. To handle the
complexity of finding all possible candidates processes q, a
heuristic function can be used to filter the set of significant
candidates, and to speed up the search of a successful one. The
heuristic function proposed in this article exploits the process
p and essentially takes into account its syntactic structure; the
output of the function, namely ĥ-value, is an integer value that,
roughly speaking, measures the complexity of the process q
with respect to the structure of p. The function produces 0 to
mean that q cannot be the good candidate for the process p:
in this case the structure of q is in contrast with structure of p
and the unsuccessful result is returned as fast as possible. In
the other cases, greater is the value returned by the heuristic
function, greater is the structural similarity with p.

We formally define the function ĥ.
Definition 3.1: Let p and q be two CCS processes. The

function ĥ(q, p) is inductively defined on the process q as in
Table II.

For q = nil (Rule R1) ĥ returns 1, when p cannot move, as
trivially nil is equivalent to p, otherwise ĥ returns 0.

When applied to α.q (Rule R2), if p = β.p′ the number
returned by ĥ is 1 plus the value returned by the recursive
application of the function to q and p′. If p = p′[f], we simply
iteratively apply the function on α.q and p′ as the relabelling
function does not modify the structure of p. Otherwise, the
function terminates returning 0.

When the choice of two processes is encountered q = q1+q2
(Rule R3), if also p is a summation the maximum number
between the two components is returned, while if p = p′[f],
we simply iteratively apply the function on q and p′ as
the relabelling function does not modify the structure of p.
Otherwise, the function ĥ returns 0, since trivially q does not
have the same structure of p.

For the parallel composition of processes (Rule R4), the
function acts as Rule R3.

When considering a restricted process q\L (Rule R5), if p =
p′\L′ the number returned by ĥ is 1 plus the value returned

by the recursive application of the function to q and p′. If
p = p′[f], we simply iteratively apply the function on q\L and
p′ as the relabelling function does not modify the structure of
p. Otherwise, the function ĥ returns 0, since trivially q does
not have the same structure of p.

When considering a relabelled process q[f] (Rule R6), if
p = p′[f], we simply iteratively apply the function on p′ as
the relabelling function does not modify the structure of p.
Otherwise, the function is applied on q and p.

Finally, when both p and q are constants, by (Rule R7) the
function applies to the bodies of each constant; while when
only q is a constant (q = x) the function is recursively applied
to the body of x and on p itself. The halting of ĥ is not
a problem; it is sufficient to expand once the body of each
constant x. This can be obtained storing in a set C each
constant which has been expanded. Initially, C is equal to
the empty set. When we find an already expanded constant
the value returned is 0, otherwise we recursively apply the
function on the body of the constant.

Note that ĥ is very simple to calculate as it is syntactically
defined.

Example 3.1: Consider the following CCS repository:

R = {q1, q2, q3}

where

q1
def
= a1.b1.nil|c1.d1.nil

q2
def
= a2.b2.nil + d2.nil

q3
def
= a3.(b3.nil + c3.nil) + d4.nil

Let p = a.(b.nil+ c.nil) + d.nil be the CCS process that we
have to designed. It turns out that:

ĥ(q1, p) = 0, ĥ(q2, p) = 4, ĥ(q3, p) = 9

The above results suggest that the more suitable process q ∈ R
is the process q3, since it has the same structure of the process
p. It turns out that ĥ(q1, p) = 0, since q1 has a structure
completely different from p, while ĥ(q2, p) = 4, since q2
match with p only a summation, two prefixing operators (i.e.,
the prefix after a2 and that after d2) and one nil operator.
Finally, ĥ(q3, p) = 9, as all the right operators (four prefixing
operators, two summation operators, three nil) occurring in q3
match with those occurring in p.

C. Equivalence checking

The notion of best-fit model is implemented using equiva-
lence checking. We use the IIT Delhi Concurrency Workbench
[11] which is one of the most popular environments for
verifying concurrent systems which supports several different
specification languages, among which CCS and incorporates
an equivalence checker. This phase starts from the processes
whose heuristic values are maximal. The processes with bigger
heuristic values are the most likely similar to the wiki category
that has to be designed. Equivalence checking is applied as the
following strategy suggests.

5

R1. ĥ(nil, p) =

{
1 if p = nil
0 otherwise

R2. ĥ(α.q, p) =

{
1 + ĥ(q, p′) if p = β.p′

ĥ(α.q, p′) if p = p′[f]
0 otherwise

R3. ĥ(q1 + q2, p) =

{
1 + max{(̂h(q1, p1) + ĥ(q2, p2)), (̂h(q1, p2) + ĥ(q2, p1))} if p = p1 + p2

ĥ(q1 + q2, p′) if p = p′[g]
0 otherwise

R4. ĥ(q1|q2, p) =

{
1 + max{(̂h(q1, p1) + ĥ(q2, p2)), (̂h(q1, p2) + ĥ(q2, p1))} if p = p1|p2
ĥ(q1|q2, p′) if p = p′[g]
0 otherwise

R5. ĥ(q\L, p) =


1 + ĥ(q, p′) if p = p\L′

ĥ(q\L, p′) if p = p′[f]

0 otherwise

R6. ĥ(q[f], p) =

{
ĥ(q, p′) if p = p′[g]

ĥ(q, p) otherwise

R7. ĥ(x, p) =

 ĥ(q, p′) if x
def
= q and p = y and y

def
= p′

ĥ(q, p) if x
def
= q and p 6= y

TABLE II: The ĥ function.

Let p be the CCS process corresponding to the wiki category
that must be designed and R the following CCS repository:

R = {q1, . . . , qn}

1) Insert in the set S all the processes qi ∈ R, 1 ≤ i ≤ n,
with the maximum ĥ-value;

2) Check in S, for a process r, such that

S(r[f]) ∼ S(p[f])

where f ia a relabebling function defined as explained
below.

3) if r exists then the best candidate is r, otherwise we can
return any process in S.

The strategy operates as follows:
1) First, we construct the set S of CCS processes selecting,

from the repository R, all processes with the maximum
k̂-value. This is obtained exploiting the ĥ function previ-
ously defined. The processes in S are the processes most
structural similar to the process p that has to be designed.

2) Then, we formally verify the structural similarity between
any process r in S and p. This is obtained using strong
bisimilarity equivalence. Since we are not interested in
the action name of a single page but only in finding
similar structure, all the actions occurring both in r and
in p are relabelled without the specific name of the
page. This is obtained using the function f that relabels
all actions corresponding to specific pages with generic
new action names. They must indicate only the type of
the page (internal/external). In addition to equivalence
checking, in this step we can also apply model checking,
if we want to be more accurate on the similarity between
two processes.

3) Finally, we elect as best model r, if it exists a process
satisfying the conditions of step 2, otherwise we elect as
best model any process in S.
The two steps ”Selection of the best-fit wiki model” and
”Equivalence checking” are grouped in Figure 1.

D. Wiki design process and verification

The final stage deals with design and maintenance tasks.
The elected model of the previous step may be exploited
to start the design process. Moreover, the CCS model can
be also used to verify wikis as done in [10]. After model
creation, automatic model checking can be used. Once we
have the CCS processes of wikis, we can use temporal logic
to specify desired properties. For example, we can consider
the property: “Island Property” that allows to check whether
a page is an ”island”. The latter does not communicate with
any other page: it is an isolated page. It is important to verify
a similar property since it means, in term of refactoring, that
we detected a problem on the category and the page should
be moved elsewhere. Obviously, the wiki structure can be
naturally modelled as a graph. Verifying properties like “Island
property” can be done by a simple reachability check or graph
connectivity analysis.

Nevertheless, the availability of powerful formal verification
tools allow us to easily verify any other property.

IV. CONCLUSION AND RELATED WORK

We proposed an equivalence-based methodology to support
the design of wikis. First, from existing wiki databases, we
derive wiki formal models, by parsing a wiki dump. Thus, a
formal repository is generated. Afterwards, an user can provide

6

a set of desired features in order to build a tentative process.
We proceed with equivalence checking looking for a similar
structure between the formal repository of processes and the
tentative one. Eventually we chose the process that best-fit
the one that must be designed. For best-fit we mean that
the processes have a similar structure without considering the
name of the actions which activate the pages. In particular we
selected best-fit models speeding the election up with the aid
of a heuristic function.

Actually, application of formal methods has been high-
lighted in connection with a variety of disciplines such as
design pattern mining [12], biology [5][13], test generation
[14], battery management systems [15] among others. Nev-
ertheless, as far as we know nobody addressed the problem
of wiki design exploiting the power of formal methods. The
first attempt can be found in [10], where the authors propose
a novel methodology based on model checking to analyse and
verify the architecture of wikis.

Rosenfeld et al. [16] proposed an approach to detect quality
problems in semantic wikis inspired by the bad smell problems
in software engineering. The approach mostly focus on anno-
tations in order to incrementally create a structured ontology,
while we work on links to look for similar structures.

Alluvatti et al. [17] also investigated on the quality and
evolution of wikis. They proposed to evaluate the quality of
wikis basing on the number of edits and contributors per page.

Puente et Diaz [18] defined the semantics of common refac-
toring operations based on Wikipedia best practices, advocated
for the use of mind maps as a visualization of wikis for
refactoring and introduced a Domain Specific Language for
wiki refactoring built on top of FreeMind, a mind mapping
tool.

Aversano et al. [19] presented a preliminary work for
refactoring wiki content. The method is built upon a software
refactoring method which exploits the dominance relations on
the analysed software system call graph. In a more recent
paper [20], Dohrn and Riehle extended their Wiki Object
Model (WOM) to achieve wiki transformations and help users
to easily and consistently evolve the content and structure
of a wiki. They employed a stored WOM and used an
expensive script driven by the eXtensible Stylesheet Language:
Transformations (XSLT), modifying the foundations of a wiki.

Future work will focus on improving the heuristic-based
function in order to increase the accuracy of the selected mod-
els. A step to improve the readability of the selected models
may be added [21]. We even plan to apply our methodology
in a real context to prove the effectiveness of the equivalence-
based selection of best-fit models. An unique framework to
design and refactoring [10] wikis can be reached. Finally, we
plan to extend our technique, in order to introduce semantic
analysis of category names and to model with Markov chains,
the navigation among pages especially because some links are
more likely to be used than others [22].

REFERENCES

[1] W. Cunningham et al., “Wiki design principles,” 2006.

[2] C. Standing and S. Kiniti, “How can organizations use wikis for
innovation?” Technovation, vol. 31, no. 7, pp. 287–295, 2011.

[3] R. Milner, Communication and concurrency, ser. PHI Series in computer
science. Prentice Hall, 1989.

[4] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
2001.

[5] M. Ceccarelli, L. Cerulo, and A. Santone, “Infer gene regulatory
networks from time series data with formal methods,” in 2013 IEEE
International Conference on Bioinformatics and Biomedicine, Shanghai,
China, December 18-21, 2013, 2013, pp. 115–120. [Online]. Available:
http://dx.doi.org/10.1109/BIBM.2013.6732473

[6] A. Calvagna, A. Fornaia, and E. Tramontana, “Assessing the correctness
of JVM implementations,” in 2014 IEEE 23rd International WETICE
Conference, WETICE 2014, Parma, Italy, 23-25 June, 2014, 2014, pp.
390–395. [Online]. Available: http://dx.doi.org/10.1109/WETICE.2014.
33

[7] R. Chebil, W. Chaari, S. Cerri, and K. Ghedira, “A causal graph based
method to evaluate e-collaboration scenarios,” in Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 2013 IEEE 22nd
International Workshop on, June 2013, pp. 225–230.

[8] S. Schaffert, “Ikewiki: A semantic wiki for collaborative knowledge
management,” in Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, 2006. WETICE ’06. 15th IEEE International Workshops
on, June 2006, pp. 388–396.

[9] A. Stocker, A. Richter, P. Hoefler, and K. Tochtermann, “Exploring
appropriation of enterprise wikis,” Computer Supported Cooperative
Work (CSCW), vol. 21, no. 2-3, pp. 317–356, 2012.

[10] G. De Ruvo and A. Santone, “A novel methodology based on
formal methods for analysis and verification of wikis,” in 2014
IEEE 23rd International WETICE Conference, WETICE 2014, Parma,
Italy, 23-25 June, 2014, 2014, pp. 411–416. [Online]. Available:
http://dx.doi.org/10.1109/WETICE.2014.25

[11] R. Cleaveland and S. Sims, “The ncsu concurrency workbench,” in CAV,
ser. Lecture Notes in Computer Science, R. Alur and T. A. Henzinger,
Eds., vol. 1102. Springer, 1996, pp. 394–397.

[12] M. L. Bernardi, M. Cimitile, G. De Ruvo, G. A. Di Lucca, and
A. Santone, “Improving design patterns finder precision using a model
checking approach,” CAiSE forum.

[13] M. Ceccarelli, L. Cerulo, G. De Ruvo, V. Nardone, and A. Santone,
“Infer gene regulatory networks from time series data with probabilistic
model checking,” FormaliSE 2015.

[14] P. Arcaini, A. Gargantini, and E. Riccobene, “An abstraction technique
for testing decomposable systems by model checking,” in Tests and
Proofs - 8th International Conference, TAP 2014, Held as Part of
STAF 2014, York, UK, July 24-25, 2014. Proceedings, 2014, pp. 36–52.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-09099-3 3

[15] F. Baronti, C. Bernardeschi, L. Cassano, A. Domenici, R. Roncella,
and R. Saletti, “Design and safety verification of a distributed
charge equalizer for modular li-ion batteries,” IEEE Trans. Industrial
Informatics, vol. 10, no. 2, pp. 1003–1011, 2014. [Online]. Available:
http://dx.doi.org/10.1109/TII.2014.2299236

[16] M. Rosenfeld, A. Fernández, and A. Dı́az, “Semantic wiki refactoring.
a strategy to assist semantic wiki evolution,” in Proceedings of the
Fifth Workshop on Semantic Wikis (SemWiki 2010), co-located with 7th
European Semantic Web Conference, ESWC, 2010.

[17] G. M. Alluvatti, A. Capiluppi, G. De Ruvo, and M. Molfetta, “User
generated (web) content: Trash or treasure,” in Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution, ser. IWPSE-EVOL’11.
New York, NY, USA: ACM, 2011, pp. 81–90.

[18] G. Puente and O. Dı́az, “Wiki refactoring as mind map reshaping,” in
CAiSE, 2012, pp. 646–661.

[19] L. Aversano, G. Canfora, G. De Ruvo, and M. Tortorella, “An approach
for restructuring text content,” in ICSE, 2013, pp. 1225–1228.

[20] H. Dohrn and D. Riehle, “Design and implementation of wiki content
transformations and refactorings,” in Proceedings of the 9th Interna-
tional Symposium on Open Collaboration. ACM, 2013.

[21] S. Vajjala and D. Meurers, “Readability assessment for text simplifi-
cation: From analyzing documents to identifying sentential simplifica-
tions,” International Journal of Applied Linguistics, Special Issue on
Current Research in Readability and Text Simplification, 2014.

[22] G. De Ruvo and A. Santone, “Analysing wiki quality using probabilistic
model checking,” in 2015 IEEE 24th International WETICE Conference,
WETICE 2015, Larnaca, Cyprus, 15-17 June, 2015, p. To appear.

